为了增强学生的思维能力,教案中应设计开放性问题,要想提高教案的适用性,教师们需要进行课堂实践的总结,发奋范文网小编今天就为您带来了四下册教案及反思5篇,相信一定会对你有所帮助。
四下册教案及反思篇1
教学目标:
1.使同学通过观察.交汉等活动,探索并掌握长方形和正方形的周长计算方法。
2.使同学通过观察.丈量和计算等活动,在获得直观经验的同时发展空间观念。
3.使同学在学习活动中体会实际生活中的数学,发展对数学的兴趣,培养交往.合作的探究的意识与能力。
设计理念
一、创设生动情境,激发同学探索的动机。
在这节课中,通过创设两只猫比散步路线的长短这样一个实例,设置悬念,让同学在生动有趣的数学情境中开始学习,并且让这个情景贯穿整节课,充沛调动了同学学习的积极性和主动性。
二、巧设数学活动,激励同学主动探究。
在这节课的设计中,我为同学的.探究设计了一系列丰富多彩的活动,让同学通过操作.交流等丰富多样的学习方式,提高学习效率,培养同学的创新意识。比方:先说怎样可以知道长方形和正方形的周长,让同学借助与自身的生活经验,初步得同长方形周长计算有哪些战略;通过猜一猜图形的周长初步感知计算方法,培养了数学直觉;用自身的方法算一算图形的周长,让同学感悟解决问题的战略多样化;说说自身比较喜欢哪种计算方法,等等。
三、和时反馈反思,渗透学习战略。
在本课的教学中,对学习过程的和时反馈,对解决问题结束的和时反思,使同学能够正确认识自身的认知过程。比方,通过反馈周长的计算方法,暗示性地让同学注意战略的优化;用试一试的方法教学正方形的周长,让同学感受到知识间的内在联系。全课小结时,通过交流收获与体会,使同学感受到胜利的喜悦。
四下册教案及反思篇2
教学目标:
1、结合具体的情境和直观操作活动,让学生探索并发现三角形任意两边和大于第三边。
2、感受动手实验是探索数学规律的途径和方法。
3、培养学生初步的应用数学知识解决实际问题的能力。
教学重点:
在观察、操作、比较、分析中发现三角形边的关系。
教学难点:
应用三角形边的关系解决问题。
教学方法:
观察法、动手操作法、小组讨论法
教学过程:
一、设境导入,猜想质疑
小明和我们一样每天都按时上学,请看小明到学校的线路图(课件示)小明上学共有几条路线?有一天小明起来晚了,你们猜猜他肯定会走哪条路去学校?为什么?
今天我们用数学知识来解决这个问题,请观察路线①和路线②围成的近似一个什么图形?路线②和路线③又近似一个什么图形?走路线②,走过的路程是三角形的一条边,走旁边的路走过的路程实际上是三角形的另外两条边的和。根据大家的判断,走三角形的两条边的和要比第三边大。是不是所有的三角形的三条边都有这样的关系呢?
这节课我们一起来研究一下,板书课题:三角形三条边的关系
二、小组合作,实验探究
实验1:我们都知道三角形是由三条线段首尾相连围成的封闭图形。现在从学具中任意拿出三根小棒,摆一摆,看看你发现了什么?
①学生动手操作。
②交流,展示汇报。(出现了两种情况:一种可以摆出三角形,另一种摆不出三角形。)
实验2:看来,不是任意三条线段都能围成三角形,有的同学用三根小棒摆成了三角形,有的同学没有摆成,这是什么原因?下面我们就对这两种情况做一个深入的探究。
①小组按要求合作,完成实验报告单(教师指导)
②反馈:a、首先我们看看怎样的三条线段能围成三角形?(生展示汇报,师板书)
通过仔细观察发现:任意两条边的和大于第三边。(板书)
质疑:‘任意’是什么意思?能举例说明吗?(生汇报)
③b、下面我们再来看看怎样的三条线段不能围成三角形?(生展示汇报,师板书)
通过对比发现不能围成情况有:
a)两边的和小于第三边;
b)两边的和等于第三边;
检验其他记录的情况,对比发现:两边的和小于或等于第三边就不能围成三角形。(相机板书)
小结:通过我们实验观察,知道了三角形的两边之和大于第三边。(出示课件)
三、建构模型,联系生活
(出示课件)小明上学示意图,现在你能用三角形的三边关系解释小明为什么走中间这条路吗?(同桌互说后,交流)
四、巩固应用,深化练习
1、做一做:教科书第86页第4题(出示课件)
学生独立完成后,汇报方法。优化出快捷的判断方法:用较小的两条边的和大于第三边就可以做到任意两条边的和大于第三条边。
2、试一试现在有两根分别是3厘米和7厘米的小棒。猜一猜,与它们能组成三角形的第三根小棒的长是多少厘米?(取整厘米数)(出示课件)学生独立思考30秒后,小组讨论。
反思
?三角形三条边之间的关系》是人教版小学数学四年级下册第五单元62页的'内容。本节课的设计,无论从教学内容的处理、教学方法的选择,还是教师角色的转变,学习方式的变革方面,都做了一些有益的尝试和探索,主要有以下几点:
一、尊重学生的认知规律,合理运用教材资源。
本节课是在认识了什么是三角形的基础上进行教学的。从实验入手,让学生通过动手围一围小棒,看是否能围成三角形,引导学生经历“发现问题、大胆猜测、操作验证、修改完善、得出结论”的探究过程,最终发现三角形三边之间的特殊关系。这样教学符合学生的认知规律,即增加了兴趣,又使学生积累了大量的操作经验和研究经验。
二、引领学生自主探究,注重解决问题策略的指导。
首先,借助复习什么是三角形,提出一个值得大家去思考和研究的问题“用三根小棒一定都能围成三角形吗?”通过实验发现两边之和小于第三边时围不成,而两边之和大于第三边时能围成三角形。继而引发学生大胆猜测:两边之和等于第三边时能围成吗?通过操作验证,发现不能。只有在两边之和大于第三边时才能围成。有意识的让学生经历研究解决问题的一般过程,对学生来说这是一种技能的积累、经验的积累。
三、密切联系生活实际,激发学生学习兴趣。
在这节课的练习中,利用学生的生活经验,设计了一个学生熟悉的情景,让学生有一种亲切感,激发了学生的学习兴趣。另外,让学生用本节课所学的知识去解决生活当中的数学问题,使学生感受到了数学不是凭空而来的,它是生活的需要。
总之,设计意图是非常好的,但是在实际教学中也出现了一些问题,比如:提供给学生的学具(吸管)有些软,剪成3段后围三角形需要用手不断调整,如果再给一段铁丝让学生把三段穿进去,去折三角形,便于固定,效果会更好。
四下册教案及反思篇3
教学内容:
教材第8页例4、例5,“练一练”和练习二第1、2题。
教学目标:
1、经历初步认识“倍”的过程,联系实际问题初步理解“倍”的含义,建立“倍”的概念,理解“几个几”和“倍”的联系。
2、在认识“倍”的教学活动中发展数学思考,提高解决问题的能力,培养学习数学的积极情感和良好的学习习惯。
教学重点:
建立“倍”的概念
教学准备:
圆片数个,例5花图、线段图等。
教学过程:
一、动手操作,导入新课
1、根据老师的要求摆圆片。
(1)第一行摆3个圆片,第二行比第一行多摆4个,第二行摆几个圆片?
(2)第一行摆3个圆片,第二行要摆2个3,第二行摆几个圆片?
(3)第一行摆3个圆片,第二行摆的圆片个数是第一行的2倍,第二行摆几个圆片?
二、自主探索,学习新知
1、老师演示:第一行圆片摆了3个,第二行摆跟它同样多的3个,这时第二行的个数就是第一行圆片的1倍。请你也来摆一摆:第二行的个数是第一行的1倍。
2、学生动手操作,老师巡视指导,要求学生边摆边想:1倍该怎么摆?
3、题目要求我们第二行的个数是第一行的2倍,请你想一想接下去该怎么摆?(学生动手操作后)谁来说一说第二行圆片摆了()个()。
4、完整地说一说:第一行圆片有3个,第二行圆片的个数是第一行的2倍,第二行摆了2个3。
5、如果老师要求你们第二行圆片的`个数是第一行的4倍,又该怎样摆呢?如果是6倍呢?1倍呢?(学生根据老师的要求摆圆片,并完整地复述:第一行圆片有3个,第二行圆片的个数是第一行的()倍,第二行摆了()个()。
6、巩固练习:
(1)第二行圆片的个数是第一行的4倍,
第二行摆()个(),第二行一共有()个圆片。
(学生先独立摆一摆,再说一说。)
(2)第二行圆片的个数是第一行的2倍。
第二行摆()个(),第二行一共有()个圆片。
(学生独立操作,并能完整地说一说。)
(3)第二行圆片的个数是第一行的()倍。
第二行摆了()个()。
(4)第二行圆片的个数是第一行的()倍。
第二行摆了()个()。
三、教学例4、例5
1、教学例5
(1)直接出示例5。
(2)谁来说一说:菊花的朵数是月季花的()倍。你是怎样想的?引导学生完整地说一说:月季花有2朵,菊花有3个2朵,菊花的朵数是月季花的3倍,菊花一共有6朵。
(3)学生独立完成练一练第1、2、3题。
2、教学例4
(1)出示例4。
(2)花带子的长是灰带子的几倍,你是怎样想的?
(3)谈话:如果我们把灰带子的长看作1份,花带子的长就是这样的4份,(老师边讲边将花带子与灰带子进行比较)花带子的长是灰带子的4倍。
(4)在花带子的后面再添上一段,现在花带子的长有这样的几份,那么花带子的长是灰带子的几倍呢?再添上2段呢?
(5)在灰带子的后面加上一段。
我们把现在灰带子的长看作1份,那么花带子的长就有这样的几份?现在花带子的长是灰带子的几倍?你是怎样想的?
(6)我们把现在灰带子的长看作是1份,那么花带子的长就有这样的几份?花带子的长是灰带子的几倍?你又是怎样想的?
四、应用拓展
1、白皮球
花皮球
花皮球的个数是白皮球的()倍。
2、学生独立思考说一说是怎样想的?
3、谈话:老师要求花皮球的个数是白皮球的2倍,你有什么办法?(可以拿去花皮球的2段,也可以给白皮球加上一段)
4、请你也来设计一道类似的题目,同桌一个人出题,另一人根据同桌的意思画一画,摆一摆,再说一说。
五、总结
这节课,你有哪些收获?你学到了什么新的本领?跟同桌交流一下你的想法。
四下册教案及反思篇4
教学目标:
1.理解三角形高的概念。知道三角形有三条高。
2.学会画三角形的高。
3.了解直角三角形、钝角三角形三条高的画法及特征。
教学重点:
理解三角形高的概念。
教学难点:
了解三角形三条高的画法。
教学资源:
三角板、学生的学习单。
教学活动:
同学们好,这节课我们研究三角形的`高。
一、复习旧知,导入新课。
1.在前面的学习中,我们已经知道了三角形有三条边、三个顶点、三个角。(课件演示)。这节课我们继续研究三角形高的有关知识。
2.揭示课题(板书课题:三角形的高)
二、操作演示,观察发现。
1.(课件边演示边说)如果我们从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。
2.老师在黑板上示范三角形高的画法:
3.你觉得三角形会有几条高呢?为什么?(三角形有三个顶点,从三角形的每一个顶点都能向它的对边作一条垂线,所以有三条高)请同学们画出这个三角形的三条高。一名同学上黑板上演示画高。
4.认真观察三角形的高,你有什么发现?(一个三角形可以画出三条高,三角形的底和高是相互依存的。锐角三角形的三条高在三角形内相交于一点。)
三、实践应用,拓展延伸。
1.我们再来看直角三角形,你会以bc边为底,画出这个三角形的高吗?。(学生在学习单上画)。你有什么发现?(老师课件边演示边说:以直角三角形一条直角边bc为底,作高时,要从a点向它的对边bc作一条垂线,发现高与另一条直角边ab重合;如果以直角边ab为底,作高时,要从c点向它的对边作垂线,发现高与另一直角边bc重合,也就是直角三角形两条直角边,如果一条是底,那么另一条直角边就是它的高。以斜边ac为底,作高时,要从顶点b向它的对边ac作垂直线,发现高在三角形内。直角三角形也有三条高,其中一条在三角形内,另外两条高与两直角边重合。)
2.我们再来看钝角三角形,从钝角三角形的b点向它的对边作高,高在三角形内;从a点向它的对边作高,需要把对边bc延长,高在三角形外;从c点向它的对边作高,需要把对边ab延长,高也在三角形外。钝角三角形也有三条高,其中一条高在三角形内,另外两条高在三角形外。
四、反思
这节课你有什么收获?(学生因答可以是两个方面)一是从高的画法说;二是从发现说。通过研究,我们发现任何三角形都有三条高,其中锐角三角形的三条高在三角形内,并且相交于一点;直角三角形其中一条在三角形内,另外两条高与两直角边重合;而钝角三角形其中一条高在三角形内,另外两条高在三角形外。
这节课我们就研究到这儿,同学们再见!
四下册教案及反思篇5
一、教学目标:
1、通过摆一摆等操作活动,探索并发现三角形任意两边的和大于第三边,并应用这一性质判定指定的三条线段能否组成三角形。
2、引导学生参与探究和发现活动,经历操作、发现、验证的探索过程,培养自主探索、合作交流的能力。
3、激发学生探究的愿望和兴趣,培养学生参与数学活动的积极性和严谨的科学态度。
二、教学重点:
探索发现三角形任意两边的和大于第三边。
三、教学难点:
能应用发现的结论,来判断指定长度的三条线段能否组成三角形,并能灵活实际运用生活。
四、教学准备:
直尺,小棒,统计表,课件、实物投影等
五、教学过程:
(一)实践操作,问题引入
1、游戏导入
[出示两根小棒]请看,我这里有两根小棒,猜一猜,这是干什么用的?可是今天我想用这两根小棒围成一个三角形,能围成吗?为什么?围成一个三角形最少需要几根小棒?那谁能说一说什么叫做三角形?(三角形是由三条线段首尾相接围成的平面图形。)那我们就再加一根,围一个三角形,好吗?这个盒子里面有很多根长度不同的小棒,是不是随便取出一根就能和这两根小棒围成三角形呢?(谁愿意来试一试:围两个三角形)
2、问题的提出:是不是任意三根小棒都能够围成一个三角形呢?你想亲自动手试一试吗?要想操作得开心、顺利,我们要先读懂规则,读懂规则是顺利进行探索与发现的关键。请看屏幕(试验表格,默读)
(二)合理猜想,探究发现。
初步体验,提出猜想
1、学生小组合作活动
活动工具:四根小棒,其长度分别是3厘米、4厘米、7厘米、9厘米。
活动要求:(课件出示)
①每次实验选出3根小棒来围三角形,实验完毕后放回原处,以便下次实验。
②4人为一组,组长负责组织成员合作完成实验,并指派一名同学为记录员,填写实验报告。
③全部实验完毕后,小组内同学说一说哪三根小棒能围成一个三角形。
师巡视,参与小组活动,并给予适当指导。
全班讨论交流:光顾着研究也不行,我们还得善于将自己的发现和大家一起交流、一起分享,你们说是吗?(是)谁愿意把你们摆的情况 给大家介绍一下?
(1) [实物投影]展示实验报告, 摆的情况有:
① 3、4、7
②3、4、9
③3、7、9
④ 4、7、9
[电脑动画演示四种围三角形的情况]
(2)讨论: 这四组小棒,有的围成了三角形,有的没有围成三角形,这是怎么回事呢?能否围成一个三角形和什么有直接的关系?(板书课题)(先小组交流,然后共同分享)大胆猜想一下,这三条边之间存在着什么样的关系?
(3)提出猜想:三角形的三条边,一定要有任意两条边的长度加起来比第三条边长,否则不能围成三角形。(板贴:三角形 两边的和大于第三边 任意说不出来,教师就要引导,举例子:如果这三条边的长度我们用a/b/c三个字母来代替,怎么样来表示他们的关系呢?怎么样用一句话代替他们之间的关系呢?这仅仅是我们在探索过程中的一个猜想,到底三角形三边之间是不是有这样的关系呢?我们还要进行验证。你想怎样验证?(课件出示一个三角形,完成板书 字母代替)
验证猜想
1、小组验证猜想活动:三角形任意两边长度的和一定比第三条边大吗?
2、活动要求:
①小组内每一名同学任意画一个三角形,量出三条边的长度,进行比较。
②小组交流讨论,你发现了什么?
3、教师小结:三角形任意两边的和大于第三边。师问:同学们刚才实验得出①和②不能围成三角形,而在①中,3+7>4呀,两边之和大于第三边!(加强对三角形任意两边的和大于第三边中的任意理解)
4、练习:(1)书上31页第一题。
师问:如果我给你3根小棒,你能很快判断能否摆成三角形吗?
(2)一组线段:3厘米、3厘米、3厘米、4厘米、6厘米,如果请你选其中三条围成一个三角形,你会怎么选?
(三)实践应用,强化认知
1、[课件出示动画情景图 小和尚挑水]
梅花亭
清泉山
少林寺
小和尚去清泉山取水你认为他会走哪条路?你是怎样想的?
2、建筑工人打算制作一个三角形的钢架,其中有两根钢管长分别是5米和8米,那么第三根钢管的长可能是几米?
思考题:用15根等长的火柴棒摆成的三角形中,最长边最多可以由几根火柴棒组成?
(四)自我小结,学习反思
这节课你有哪些收获?关于三角形三边的关系还有值得我们探讨的.地方,比如
1、三角形边的关系
2、三角形任意两边的和大于第三边。
3、角形任意两边的差与第三边有什么样的关系?
有兴趣的同学课后可以自己探索。
教学反思
?三角形边的关系》是北师大版四年级下册数学第二单元《认识图形》中的一节内容,课标要求学生通过摆一摆等操作活动,探究并发现“三角形任意两边的和大于第三边”这一规律,会应用这一规律解决简单问题。
我在教学这一节内容时,忽视了“摆一摆”这一环节,而是让学生自由画三角形,在比较三边关系时,也没有引导学生深入计算,导致学生知识的生成有点模糊。因此,教学难点的突破不是很到位。
我在今后的教学中,一定克服以上缺点,积极学习,争取高效率课堂。
四下册教案及反思5篇相关文章: